About seller
BACKGROUND Until recently, patients who have the same type and stage of cancer all receive the same treatment. It has been established, however, that individuals with the same disease respond differently to the same therapy. Further, each tumor undergoes genetic changes that cause cancer to grow and metastasize. The changes that occur in one person's cancer may not occur in others with the same cancer type. These differences also lead to different responses to treatment. Precision medicine, also known as personalized medicine, is a strategy that allows the selection of a treatment based on the patient's genetic makeup. In the case of cancer, the treatment is tailored to take into account the genetic changes that may occur in an individual's tumor. Precision medicine, therefore, could be defined in terms of the targets involved in targeted therapy. METHODS A literature search in electronic data bases using keywords "cancer targeted therapy, personalized medicine and cancer combination therapies" was conducted erapies. Acute lung injury (ALI) is caused by severe infection, and urgently needs effective treatments or validated pharmacological targets. Formyl peptide receptor 2 (Fpr2) plays essential roles in immune responses and inflammatory diseases. In the present study, Fpr2 expression was markedly increased in lung tissues of lipopolysaccharide (LPS)-challenged mice, and these effects were confirmed in LPS-stimulated macrophages. Then, the in vitro analysis suggested that Fpr2 knockdown significantly decreased LPS-induced inflammatory response in macrophages. Notably, the in vivo experiments indicated that Fpr2 deficiency alleviated ALI in LPS-treated mice, as evidenced by the improved histological changes in lung, reduced protein concentrations in bronchoalveolar lavage fluid (BALF) and decreased neutrophil infiltration. In addition, LPS-induced pulmonary inflammation was ameliorated by Fpr2 knockout, which was partly through blocking nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathwken together, findings in the present study illustrated that Fpr2 could directly interact with TAK1 to promote ALI through enhancing inflammation and oxidative stress associated with the activation of Nrf2, providing a novel therapeutic target to develop effective treatment against ALI progression. Pathological cardiac hypertrophy is characterized by myocyte enlargement and cardiac dysfunction. However, the pathogenesis for this disease is still poorly understood. see more Stimulator of interferon genes (STING) could meditate inflammation and immune response in various kinds of diseases. In this work, we demonstrated that STING was critical for pressure overload-induced cardiac hypertrophy. Results showed that STING expression was up-regulated in human and mouse hypertrophic hearts. STING knockout attenuated cardiac hypertrophy induced by aortic banding (AB). The effects of STING deficiency on the improvement of cardiac hypertrophy and dysfunction were associated with the restrained macrophage infiltration, inflammatory response and fibrosis. Moreover, ER stress was detected in hearts of AB-operated mice, as evidenced by the increased expression of phospho-protein kinase RNA-like endoplasmic reticulum kinase (PERK), phospho-eukaryotic initiation factor 2 alpha (eIF2α) and phospho-inositol-requiring kinase (IRE)-1α. Importantly, these proteins were restrained in mice with STING knockout after AB surgery. What's more, angiotensin II (Ang II)-induced STING could be accelerated by ER stress activator, while being markedly abolished by the ER stress inhibitor. We then found that whether co-treated with or without transforming growth factor-beta 1 (TGF-β1), cardiac fibroblasts cultured in the conditional medium (CM) from Ang II-incubated cardiomyocytes with STING knockdown exhibited significantly reduced fibrosis, as displayed by the clearly down-regulated expression of α-SMA, Collagen type I (Col I) and Collagen type III (Col III). Therefore, we defined STING as an important signal contributing to cardiac hypertrophy closely associated with ER stress. Faciogenital Dysplasia 1 (FGD1) has been involved in a variety of biological processes, including cytoskeleton restructuring, cell morphology, cell cycle progression, and cell polarity. Abnormal expression of FGD1 was also identified in several types of cancers, indicating its critical role in the development of cancers. However, little is known about the role of FGD1 in hepatocellular carcinoma (HCC). In this study, the expression of FGD1 in HCC was mined with the RNA sequencing data from the cancer genome atlas. By over-expressing or knocking down of FGD1, the effects of FGD1 on the malignant behavior of HCC were evaluated both in vitro and in vivo. We find that FGD1 is up-regulated in HCC and correlated with the development and prognosis of HCC. By over-expressing or knocking down of FGD1, the effects of FGD1 on the malignant behavior of HCC were evaluated both in vitro and in vivo. Knockdown of FGD1 remarkably inhibits the malignant behaviors and causes morphological disorder of pseudopodia, autophagy inhibition and mitochondrial dyfunction in HCC cells. Further investigation shows that Cdc42, a Rho GTPase, plays a role in these processes. Overexpression of FGD1 significantly promotes the oncogenic properties of HCC cells. Collectively, these findings reveal that FGD1 exhibits oncogenic properties in HCC through regulating cell morphology, autophagy and mitochondrial function, suggesting that FGD1 may serve as a potential therapeutic target for HCC. Gastric cancer is a frequently occurring cancer with high mortality each year worldwide. Finding new and effective therapeutic strategy against human gastric cancer is still urgently required. Ginkgolic acid (GA), a botanical drug, is extracted from the seed coat of Ginkgo biloba L. with various bioactive properties, including anti-tumor. Unfortunately, if GA has antitumor effect on human gastric cancer and the underlying molecular mechanisms have yet to be investigated. In the present study, we found that GA markedly reduced the gastric cancer cell viability. Furthermore, GA treatment led to the reduced migration ability of gastric cancer cells, which was associated with the decreased protein expression levels of Rho-associated protein kinase 1 (ROCK1), matrix metalloproteinase-2 (MMP-2), MMP-9 and α-smooth muscle actin (α-SMA). In addition, GA dose-dependently induced apoptosis in gastric cancer cells through activating Caspase-9/-3 and poly(ADP-Ribose) polymerase (PARP), which was along with the reduced Bcl-2 and Bcl-xl expression levels, and the elevated Bax and Bad levels.