About seller
solution to develop various multi-functional platforms for disease diagnosis and corresponding clinical treatment.Wormlike micelles (or reverse wormlike micelles) are flexible cylindrical chains that are normally formed in water (or a nonpolar organic solvent) at 25.0 °C or above; the formation of wormlike micelles at lower temperatures is rare. Here, we have reported wormlike micelles formed at low temperature using an ionic liquid surfactant (1-octadecyl-3-nonyl imidazolium bromide) in polar organic solvents (including 1,3-propanediol, 1,2-propylene glycol, N,N-dimethylformamide, and glycerol/1,2-propylene glycol mixture) in the absence of any additives. The viscoelasticity and morphology of the wormlike micelles were studied using rheology, small-angle X-ray scattering, and cryo-transmission electron microscopy. The viscoelastic properties of the wormlike micelles in polar solvents are affected by the solvent type (or the weight ratio of glycerol to 1,2-propylene glycol), surfactant concentration, and temperature. Moreover, the G' and G'' crossover twice in the dynamic curves, which is different from the case in water. The first crossover (at low frequency) corresponds to the relaxation time for the alkyl chains to disentangle from the transient network, and the second crossover (at high frequency) is related to the segmental motion of the chains. Furthermore, the tribological performance of these wormlike micelles is investigated at low temperature. It is found that the protective film (formed by the physical adhesion of the wormlike micelles on the surface of friction disk pair) and the tribochemical reaction together lead to good antifriction and antiwear performance, which indicates the application prospects of these wormlike micelles in low-temperature lubrication.The planarity and the appropriate size of the porphyrin ring make porphyrin derivatives ideal ligands for stacking to guanine quartets and they could thus be used as anti-cancer drugs. In this contribution we analyzed complexes of a guanine quartet with a porphyrin molecule, magnesium porphyrin and calcium porphyrin. As magnesium and calcium ions are located in the center and above the porphyrin ring, respectively, the two metalloporphyrins are expected to have different impacts on the target. The optimized structures of the three systems revealed geometrical changes in the guanine quartet upon complexation while stacking of porphyrin and magnesium porphyrin does not induce significant changes, calcium porphyrin considerably distorts the quartet's structure, which has significant implications for the binding properties among guanine molecules. Ab initio molecular dynamics simulations revealed that the systems perform small fluctuations around the equilibrium structures. The largest atom displacements are performed by the calcium ion. The interacting quantum atoms methodology enabled analysis of the binding properties in the studied complexes. Interestingly, although check details of the calcium ion is responsible for the quartet's pronounced deformation and weakening of guanine-guanine binding, it also enables stronger binding of the metal ion to the quartet, resulting in a more stable complex. These results imply that metalloporphyrin-like ligands with out-of-plane central ions might represent promising drug candidates in anti-tumor treatment.Correction for 'A ROS-scavenging multifunctional nanoparticle for combinational therapy of diabetic nephropathy' by Yuna Tong et al., Nanoscale, 2020, DOI .New electrode materials are crucial to high-performance lithium-ion batteries (LIBs). Silicon monophosphides (SiPs), composed of silicon and phosphorus, have a very high theoretical capacity (3060 mA h g-1), which is more than 8 times that of graphite (372 mA h g-1). The two-dimensional structure of SiPs also benefits ion transportation and diffusion. In this work, the chemical vapor transport (CVT) method is employed to synthesize SiPs for LIB anodes, and the lithium storage capacity co-affected by size and crystallinity is investigated using controllably synthesized thin belts and bulk crystals. The SiPs prepared by the high-temperature iodine-assisted CVT method have a belt-like morphology about 72 nm thick. After 200 cycles, the stable capacity is about 615 mA h g-1 at 100 mA g-1, and a reversible capacity of ∼320 mA h g-1 is achieved at a high current density of 5.0 A g-1. In contrast, the micrometer-thick bulk SiP crystals cannot provide efficient lithium ion extraction. Moreover, the smaller and thinner SiPs obtained at a lower temperature show abnormally high mass transport resistance and low lithium ion diffusivity. These results demonstrate that SiPs are promising LIB anode materials, and the size and crystallinity are closely related to the anodic performance. This new knowledge is valuable for the development of high-performance LIBs.In this study, novel copillar[4+1]arenes were used as central heteromultivalent scaffolds via orthogonal couplings with a series of biologically relevant molecules such as carbohydrates, α-amino acids, biotin and phenylboronic acid. Further modifications by introducing maleimides or cyclooctyne groups provided molecular probes adapted to copper-free click chemistry. An octa-azidated fluorescent rotaxane bearing two distinct ligands was also generated in a fully controlled manner.Encapsulation and preorganization of diacetylene monomers in glycolipid nanotubes allows for the production of polydiacetylene nanotubes with hydrophilic/hydrophobic surfaces and left/right-handed helicities.All-inorganic lead halide perovskites (AILHPs) quantum dots (QDs) have been widely investigated as promising materials for optoelectronic applications because of their outstanding luminescence properties. Lead leakage, a common impurity and environmental pollution source that majorly hinders the commercialization of lead halide perovskite devices, has lately attracted considerable attention. #link# Its detrimental influence on the luminescence performance has been widely reported. However, an in-depth experimental study of the chemistry geometry relating to lead leakage in CsPbBr3 QDs has been rarely reported to date. Herein, combining real-time (scanning) transmission electron microscopy ((S)TEM) with density functional theory calculations, we showed detailed atomic and electronic structure study of the phase boundaries in CsPbBr3 QDs during the lead leakage process. A phenomenon of two-phase coexistence was reported to be linked with the lead precipitating in CsPbBr3 QDs. A phase boundary between the Ruddlesden-Popper (RP) phase and conventional orthorhombic perovskite was developed when the lead particle was aggregating in the QDs.